$\begin{array}{c} \text{Math 111-002} \\ \text{Assignment $\#$ 11} \end{array}$

Please remember that the assignment consists of only a sample of the kind of questions you are supposed to be able to do. It is **not** a safe practice to just do the assignment, and that is why there is a list of "suggested practice problems" in the course web page.

1. Determine if the series is convergent or divergent.

(a)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}+3}{n^2}$$
 (g) $\sum_{n=1}^{\infty} n^{-n}$
(b) $\sum_{n=1}^{\infty} \frac{n^3}{n^4-2}$ (h) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+n}}$
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}n^3}{n^4-2}$ (i) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n^2+n}}$
(d) $\sum_{n=3}^{\infty} \frac{2n+1}{n^2-2n}$ (j) $\sum_{n=1}^{\infty} (-1)^n (\sqrt{n+1}+\sqrt{n})$
(e) $\sum_{n=1}^{\infty} \frac{5^n+n}{8^n-n^3}$ (k) $\sum_{n=1}^{\infty} (-1)^n (\sqrt{n+1}-\sqrt{n})$

- 2. Estimate $\sum_{n=1}^{\infty} \frac{2}{(4n+2)^5}$ with six correct decimals.
- 3. Estimate $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2 2^n}$ with three correct decimals.
- 4. Find the values of p for which the series is convergent.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n(\ln n)^p}$$

(b) $\sum_{n=2}^{\infty} \frac{1}{n \ln n (\ln(\ln n))^p}$
(c) $\sum_{n=3}^{\infty} \frac{\ln n}{n^p}$
(d) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$