
Math 111-002
Assignment # 12 – Answers

1. Look at the trick we used to find power series representations of ln(1 + x) and arctanx.
Use an analog trick – but with differentiation instead of integration – to find a power
series representation of

f(x) =
1

(1− x)2
, |x| < 1.

Answer. We know that, since |x| < 1,

1

1− x
=
∞∑
n=0

xn;

if we differentiate this equality (which we can do because of the theorem that guarantees
that power series can be differentiated term by term within their interval of convergence)
we get

f(x) =
1

(1− x)2
=

(
1

1− x

)′
=

(
∞∑
n=0

xn

)′
=
∞∑
n=0

nxn−1 =
∞∑
n=0

(n+ 1)xn

Remark. The last equality is simply a change of index, from n to n+ 1; if you don’t see
this clearly, just write the first few terms of both sums to check they are equal.

2. Find power series representations for

(a)
x3

(1− x)2

Answer. Note that, if we write g(x) = x3

(1−x)2 , then g(x) = x3 f(x) with f as in the

previous question. For |x| < 1,

g(x) = x3
∞∑
n=0

(n+ 1)xn =
∞∑
n=0

(n+ 1)xn+3 =
∞∑
n=3

(n− 2)xn

(b)
1

(1− x)3

Answer. For h(x) = 1
(1−x)3 , note that f ′(x) = 2

(1−x)3 , so h(x) = 1
2
f ′(x). Then

h(x) =
1

2

(
∞∑
n=0

(n+ 1)xn

)′
=
∞∑
n=1

n(n+ 1)

2
xn−1 =

∞∑
n=0

(n+ 1)(n+ 2)

2
xn

(c)

(
x

2− x

)3

.
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Answer. Let k(x) =
(

x
2−x

)3
. We can write k(x) = x3

(2−x)3 . We have

1

(2− x)3
=

1

2

(
1

(2− x)2

)′
=

1

2

(
1

2− x

)′′
.

Using a geometric series trick,

1

2− x
=

1

2

1

1− x
2

=
1

2

∞∑
n=0

(x
2

)n
=

1

2

∞∑
n=0

xn

2n
, −2 < x < 2

(for the radius of convergence, note that we need |x/2| < 1). So we have

x3

(2− x)3
= x3

1

(2− x)3
=
x3

2

(
1

2

∞∑
n=0

xn

2n

)′′
=
x3

4

∞∑
n=0

n(n− 1)xn−2

2n

=
∞∑
n=0

n(n− 1)xn+1

2n+2
=
∞∑
n=3

(n− 1)(n− 2)xn

2n+1

3. Find the radius and interval of convergence, and an explicit formula for

(a)
∞∑
n=1

nxn

Answer. We found above that

∞∑
n=0

(n+ 1)xn =
1

(1− x)2
, −1 < x < 1.

Then

∞∑
n=0

nxn =
∞∑
n=0

[(n+ 1)− 1]xn =
∞∑
n=0

nxn −
∞∑
n=0

(n+ 1)xn =
1

(1− x)2
− 1

1− x

=
1− (1− x)

(1− x)2
=

x

(1− x)2
.

To confirm the radius of convergence, we have

lim
n→∞

n

n+ 1
= 1,

so the radius of convergence is 1 and the interval of convergence is (−1, 1). The
series does not convergence at x = 1 nor at x = −1.

(b)
∞∑
n=1

n2(x− 3)n
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Answer. Using part (3a) we have

∞∑
n=1

n(x− 3)n =
x− 3

(1− (x− 3))2
=

x− 3

(4− x)2
,

for −1 < x− 3 < 1, that is 2 < x < 4. Taking derivatives,

∞∑
n=1

n2(x− 3)n−1 =

(
∞∑
n=1

n(x− 3)n

)′
=

(
x− 3

(4− x)2

)′
=

x− 2

(4− x)3

Then

∞∑
n=1

n2(x− 3)n = (x− 3)
∞∑
n=1

n2(x− 3)n−1 =
(x− 3)(x− 2)

(4− x)3
, 2 < x < 4.

(c)
∞∑
n=1

xn

n
.

Answer. We have
1

1− x
=
∞∑
n=0

xn.

Taking antiderivatives,

− ln(1− x) =
∞∑
n=0

xn+1

n+ 1
=
∞∑
n=1

xn

n
.

4. Use a power series to find

∫ 1/2

0

arctan
x

2
dx with three good decimals.

Answer. We know that

arctanx =
∞∑
n=0

(−1)nx2n+1

2n+ 1
, −1 < x < 1.

Then∫ 1/2

0

arctan
x

2
dx =

∫ 1/2

0

∞∑
n=0

(−1)n(x/2)2n+1

2n+ 1
dx =

∞∑
n=0

(−1)n

(2n+ 1)22n+1

∫ 1/2

0

x2n+1 dx

=
∞∑
n=0

(−1)n

(2n+ 1)22n+1

x2n+2

2n+ 2

∣∣∣∣∣
1/2

0

=
∞∑
n=0

(−1)n

(2n+ 1)(2n+ 2) 22n+122n+2

=
∞∑
n=0

(−1)n

(2n+ 1)(n+ 1) 24n+4
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As this is an alternating series, a bound for the approximation of the sum up to N is
given by ∣∣∣∣ (−1)N+1

(2(N + 1) + 1)(N + 1 + 1) 24(N+1)+4

∣∣∣∣ =
1

(2N + 3)(N + 2) 24N+8
.

We want this last number to be less than 1/1000. This is comfortably achieved when
N = 0. So ∫ 1/2

0

arctan
x

2
dx ≈ 1

24
=

1

16
= 0.0625.

5. Find the Taylor polynomial of each function at the given point a.

(a) f(x) = cos x, a = π/2;

Answer. The fourth derivative of f(x) = cosx is again cosx, and the first deriva-
tives are

f (0)(x) = cos x, f (1)(x) = − sinx, f (2)(x) = − cosx, f (3)(x) = sinx, f (4)(x) = cos x.

Since a = π/2,

f (0)(a) = 0, f (1)(a) = −1, f (2)(a) = 0, f (3)(a) = 1, f (4)(a) = 0.

So

cosx = 0− (x− π

2
) + 0 +

(x− π
2
)3

3!
+ 0−

(x− π
2
)5

5!
+ 0 + · · ·

=
n∑
k=1

(−1)k(x− π
2
)2k−1

(2k − 1)!
+Rn(x),

where Rn(x) =
(−1)n+1f (2n+1)(c)(x−π

2
)2n+1

(2n+1)!
, with c between x and π/2, and |f 2n+1(c)| ≤

1.

(b) f(x) = e−x, a = 0.

Answer. Since we already know the Taylor polynomial for ex at a = 0, we can
simply replace x with −x. So, since

ex =
n∑
k=0

xk

k!
+

ecxn+1

(n+ 1)!
, c between 0 and x

we have, writing (−x)k = (−1)kxk,

e−x =
n∑
k=0

(−1)kxk

k!
+

(−1)n+1ecxn+1

(n+ 1)!
, c between 0 and −x.

6. Use the Taylor polynomials found in class to calculate the following:
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(a) The number e, with 6 good decimals.

Answer. We know that e = e1, so

e =
n∑
k=0

1k

k!
+

ec1n+1

(n+ 1)!
, c between 0 and 1,

that is

e =
n∑
k=0

1

k!
+

ec

(n+ 1)!
, c between 0 and 1.

To get 6 good decimals, we need the remainder to be less than 10−6. We can use
that e < 3, and since c ≤ 1, ec ≤ e < 3; so

Rn(1) =
ec

(n+ 1)!
≤ 3

(n+ 1)!
.

We will haveRn(1) < 10−6 if (n+1)! > 3×106. We have that 10! = 3628800 > 3×106,
so n = 9 will be enough. Then

e ' 1 +
1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
+

1

7!
+

1

8!
+

1

9!

= 1 +
1

2
+

1

6
+

1

24
+

1

120
+

1

720
+

1

5040
+

1

40320
+

1

362880
= 2.718282.

(b) The number 1/e with 6 good decimals.

Answer. Now we use that 1/e = e−1. Note that the the only difference between the
reminder for e and the reminder for e−1 is eventually the sign. So the same estimate
from (a) is good, and we only need to add until n = 9 (in fact the estimate is better
here, because we don’t need the 3: as c ∈ [−1, 0], here we have Rn(−1) ≤ 1/(n+ 1)!;
in this particular case, it doesn’t make a difference in the value of n, but in general
it could). So

1

e
' 1− 1

2!
+

1

3!
− 1

4!
+

1

5!
− 1

6!
+

1

7!
− 1

8!
+

1

9!

= 1− 1

2
+

1

6
− 1

24
+

1

120
− 1

720
+

1

5040
− 1

40320
+

1

362880
= 0.367879.

(c) arctan 1
2

with 7 good decimals.

Answer. Because of the way we found the Taylor series for arctan, we don’t have
an easy way to write the remainder. But we can use the fact that it’s series is an
alternating series, and so the remainder of the Taylor polynomial is less (in absolute
value) than the next term in the series. So, since

arctanx =
∞∑
k=0

(−1)kx2k+1

2k + 1
,
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we get that

|Rn(x)| ≤
∣∣∣∣(−1)n+1x2n+3

2n+ 3

∣∣∣∣ =
x2n+3

2n+ 3
.

Estimating the reminder for x = 1/2, we get

|Rn(1/2) =

∣∣∣∣(−1)n+1(1/2)2n+3

2n+ 3

∣∣∣∣ =
1

(2n+ 3)22n+3
.

We need this to be less than 10−7. This can be achieved with n = 9 (n = 8 almost
does, but it gets slightly above 10−7). Then

arctan
1

2
' 1

2
−
(
1
2

)3
3

+

(
1
2

)5
5
−
(
1
2

)7
7

+

(
1
2

)9
9
−
(
1
2

)11
11

+

(
1
2

)13
13
−
(
1
2

)15
15

+

(
1
2

)17
17
−
(
1
2

)19
19

=
1

2
− 1

23 × 3
+

1

25 × 5
− 1

27 × 7
+

1

29 × 9
− 1

211 × 11
+

1

213 × 13
− 1

215 × 15

+
1

217 × 17
− 1

219 × 19
= 0.4636476
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