Math 221-001 201710 Assignment # 9

Due: April 7th.

- 1. Below we write H for the set of all human beings. Decide if each of the following relations is a function.
 - (a) $A = \{(t, s) : s^2 = t\} \subset \mathbb{R} \times \mathbb{R};$
 - (b) $B = \{(t, s): t^2 = s\} \subset \mathbb{R} \times \mathbb{R};$
 - (c) $C = \{(x, y) : x \text{ is the mother of } y\} \subset H \times H;$
 - (d) $D = \{(x, y) : x \text{ is the daughter of } y\} \subset H \times H;$
 - (e) $E = \{(a, b) : a \text{ is the age of } b\} \subset \mathbb{Z} \times H;$
 - (f) $F = \{(a, b) : b \text{ is the age of } a\} \subset H \times \mathbb{Z}.$
- 2. Let $f: A \to B$ and $g: B \to C$, such that f is injective and g is surjective. Is $g \circ f$ surjective? Is it injective? Provide proof/counterexample.
- 3. Let $f: A \to B$ and $g: B \to C$, such that f is surjective and g is injective. Is $g \circ f$ surjective? Is it injective? Provide proof/counterexample.
- 4. Find an example of functions $f:A\to B$ and $g:B\to C$ such that $g\circ f$ is surjective but f is not surjective.
- 5. Let $f: A \to B$. Prove the following:
 - (a) If f is invertible, then f is bijective;
 - (b) If f is bijective, then f is invertible.
- 6. The identity function $\mathrm{id}_X: X \to X$ is sometimes denoted by $1_X: X \to X$ (that is, $1_X(x) = x$ for every $x \in X$). Find an example of sets X, Y and functions $f: X \to Y$ and $g: Y \to X$ such that $g \circ f = 1_X$ but $f \circ g \neq 1_Y$.
- 7. Consider, for each pair of integers m and n, the function $f_{m,n}: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ given by $f_{m,n}(x,y) = mx + ny$ (that is, different choices of m and n give you different functions). Decide which values of m and n (if any) make $f_{m,n}$ surjective, and which values of m and n (if any) make $f_{m,n}$ injective.