Math 221-001 201710 Assignment # 10 – Answers

1. Prove that the relation between sets given by |A| = |B| is an equivalence relation.

Answer. The identity function $1_A : A \to A$ is a bijection, so |A| = |A|; thus, the relation is reflexive. If |A| = |B|, there exists a bijection $f : A \to B$.

We can then consider its inverse $f^{-1}: B \to A$, which is also a bijection, so |B| = |A|, and the relation is symmetric.

If |A| = |B| and |B| = |C|, we have bijections $f : A \to B$ and $g : B \to C$. Then $g \circ f : A \to C$ is a bijection and |A| = |C|. So the relation is transitive.

2. Let $A \subset \mathbb{N}$ be an infinite set. Show that A is countable.

Answer. We need to construct a bijection $f : \mathbb{N} \to A$. We know that every set of positive integers has a least element (we proved that in class a very long time ago, using induction). So let a_1 be the least element of A. Now let a_2 be the least element of $A \setminus \{a_1\}$, a_3 the least element of $A \setminus \{a_1, a_2\}$, and in general a_{k+1} the least element of $A \setminus \{a_1, \ldots, a_k\}$.

Define $f(k) = a_k$. By construction, each a_{k+1} is different from all its predecessors, so f is injective. To see that f is surjective, suppose it isn't; then there exists $a \in A$ such that $a \neq A_k$ for all $k \in \mathbb{N}$. Because of the choice of each a_k , we have that $a \ge a_k$ for all k. It is easy to show by induction that $a_k \ge k$ for all $k \in \mathbb{N}$, and so we get $a \ge k$ for all $k \in \mathbb{N}$. In particular $a \ge a + 1$, a contradiction. So f is surjective.

3. Write a proof that $|\mathbb{R}| \neq |\mathbb{N}|$.

Answer. We prove that there is no surjection $f : \mathbb{N} \to \mathbb{R}$. Let $f : \mathbb{N} \to \mathbb{R}$ be any function. For each n, f(n) is a real number. Construct a real number c in the following way: the n^{th} decimal of c is

- 6 if the n^{th} decimal of f(n) is not 6;
- 7 if the n^{th} decimal of f(n) is 6.

The number c constructed like that is different from f(n), for each n, because they differ on the n^{th} decimal digit. So c is not in the image of f, and f is not surjective.

4. Show that $|\mathbb{Q}| \neq |\mathbb{R}|$.

Answer. We know that $|\mathbb{Q}| = |\mathbb{N}|$, and that $|\mathbb{N}| \neq |\mathbb{R}|$. If we had a bijection $\alpha : \mathbb{Q} \to \mathbb{R}$, we could compose it with a bijection $\beta : \mathbb{N} \to \mathbb{Q}$ to get a bijection $\beta \circ \alpha : \mathbb{N} \to \mathbb{R}$, which we know is impossible by the previous answer.