LOCAL MULTIPLIER ALGEBRAS, INJECTIVE ENVELOPES, AND TYPE I \(W^* \)-ALGEBRAS

MARTÍN ARGERAMI AND DOUGLAS R. FARENICK

Abstract. Characterizations of those separable C*-algebras that have \(W^* \)-algebra injective envelopes or \(W^* \)-algebra local multiplier algebras are presented. The C*-envelope and the injective envelope of a class of operator systems that generate certain type I von Neumann algebras are also determined.

The local multiplier algebra \(M_{\text{loc}}(A) \) of a C*-algebra \(A \) is the C*-algebraic direct limit of multiplier algebras \(M(K) \) along the downward-directed system \(E(A) \) of all (closed) essential ideals \(K \) of \(A \). Such algebras first arose in the study of derivations and were formally introduced by Pedersen in [17], where he proves that every derivation on a separable C*-algebra \(A \) extends to an inner derivation of \(M_{\text{loc}}(A) \). The question of whether every derivation of \(M_{\text{loc}}(A) \) is inner remains open for arbitrary separable C*-algebras.

A systematic study of local multiplier algebras is presented in the recent monograph by Ara and Mathieu [2]. One of the most important general facts concerning local multiplier algebras is that the centre \(Z(M_{\text{loc}}(A)) \) of \(M_{\text{loc}}(A) \) is an AW*-algebra [1]. Although \(M_{\text{loc}}(A) \) itself need not be an AW*-algebra, Frank and Paulsen [8] have showed recently that \(M_{\text{loc}}(A) \) can nevertheless be realized as a C*-subalgebra of a certain minimal injective AW*-algebra: namely, the injective envelope \(I(A) \) of \(A \) [9]. Further, even though \(M_{\text{loc}}(A) \) is not in general an AW*-algebra, there are examples in which \(M_{\text{loc}}(A) \) is actually a \(W^* \)-algebra. We show herein that for separable C*-algebras, \(M_{\text{loc}}(A) \) is a \(W^* \)-algebra if and only if \(A \) has a minimal essential ideal that is isomorphic to a C*-algebraic direct sum of elementary C*-algebras. This result also leads to a new proof of a theorem arising from work of Wright [20] and Hamana [12] that characterizes those separable \(A \) for which \(I(A) \) is a \(W^* \)-algebra.

As usual, we will denote by \(B(H) \) and \(K(H) \) the set of bounded and compact operators on a Hilbert space \(H \).

The notion of injective envelope [9, 10, 16] first arose in two seminal papers of Arveson [4, 5]. One of the principal results of [5], the so-called boundary theorem, states that if \(E \) is an operator system acting on a Hilbert space \(H \) such that \(K(H) \subset C^*(E) \), then the identity map on \(E \) has a unique completely positive extension to the algebra \(C^*(E) \subset B(H) \) if and only if the quotient homomorphism onto the Calkin algebra is not completely isometric on \(E \). This theorem is revisited in the present paper for a class of operator systems that generate discrete type I von Neumann algebras.

2000 Mathematics Subject Classification: Primary 46L05; Secondary 46L07.

Keywords and Phrases: local multiplier algebra, injective envelope, regular monotone completion, C*-algebra, AW*-algebra.
Let $\mathcal{E}(A)$ denote the set of (closed) essential ideals of a C^*-algebra A. For every $K \in \mathcal{E}(A)$, let $M(K)$ denote the multiplier algebra of K. If $K_1, K_2 \in \mathcal{E}(A)$ are such that $K_1 \subseteq K_2$, then $M(K_1) \supseteq M(K_2)$; thus, the family $\mathcal{E}(A)$ of essential ideals of A determines a downward-directed system of C^*-algebras. The local multiplier algebra $M_{\text{loc}}(A)$ of A is C^*-algebraic direct limit that arises from $\mathcal{E}(A)$:

$$M_{\text{loc}}(A) = \lim_{\rightarrow} \{ M(K) : K \in \mathcal{E}(A) \}.$$

Every C^*-algebra A is a C^*-subalgebra of its injective envelope $I(A)$ [9]. Moreover, by [8, Corollary 4.3],

$$M_{\text{loc}}(A) = \left(\bigcup_{K \in \mathcal{E}(A)} \{ x \in I(A) : xK + Kx \subseteq K \} \right)^{-},$$

where the closure is with respect to the norm topology of $I(A)$. Thus,

$$A \subseteq M_{\text{loc}}(A) \subseteq I(A)$$

is an inclusion of C^*-subalgebras. In [7], Frank showed an additional sequence of inclusions as C^*-subalgebras:

$$A \subseteq M_{\text{loc}}(A) \subseteq M_{\text{loc}}(M_{\text{loc}}(A)) \subseteq \overline{A} \subseteq I(A).$$

In the inclusions above, \overline{A} is the regular monotone completion [11] of A. For separable C^*-algebras, \overline{A} coincides with \overline{A}^σ, the regular monotone σ-completion [19] of A.

It is not known whether $\overline{A} \neq I(A)$ for separable C^*-algebras A, but all other inclusions above can be proper. Most striking is the recent example of Ara and Mathieu [3] in which they show that $M_{\text{loc}}(A) \neq M_{\text{loc}}(M_{\text{loc}}(A))$ for a certain prime AF C^*-algebra A.

Further relations are: $I(M_{\text{loc}}(A)) = I(A)$ [8, Theorem 4.6] and $\mathcal{Z}(M_{\text{loc}}(A)) = M_{\text{loc}}(\mathcal{Z}(A)) = \mathcal{Z}(I(A))$ [7, Theorem 2] (since $\mathcal{Z}(M_{\text{loc}}(A))$ is an AW*-algebra [2, Proposition 3.1.5] and, as it is abelian, is therefore injective).

1. $M_{\text{loc}}(A)$ as a W^*-algebra

It need not be true that $M_{\text{loc}}(A)$ is an AW*-algebra. For example, $M_{\text{loc}}(A) = A$ in the case where A is unital, simple, and separable—but AW*-algebras (of infinite dimension) are nonseparable. Although it is even less likely that $M_{\text{loc}}(A)$ is a W^*-algebra, this is precisely the case for a number of important examples (such as if A is a von Neumann algebra or if A can be represented as acting on a Hilbert space H in such a way as to contain every compact operator).

Theorem 1.2 below characterizes those separable C^*-algebras that admit W^*-algebra local multipliers. To prepare the way, the following lemma will be of use.

Lemma 1.1. If A is a separable C^*-algebra and if $M_{\text{loc}}(A)$ is a W^*-algebra, then $M_{\text{loc}}(A)$ is of type I.
Proof. Without loss of generality, we assume that \(M_{\text{loc}}(A) \) is faithfully represented as a von Neumann algebra acting on a Hilbert space \(H \). Thus,

\[
A \subseteq A'' \subseteq M_{\text{loc}}(A) \subseteq \overline{A} \subseteq I(A),
\]
as an inclusion of operator systems. Because \(A \) is order dense in \(\overline{A} \) [11], \(A \) is also order dense in \(A'' \); that is,

\[
h = \sup \{ k \in A^+ \mid k \leq h \}, \quad \forall h \in A''.
\]
Consequently, for any normal state \(\omega \) on \(A'' \), \(\omega(h) \geq \sup \{ \omega(k) \mid k \in A^+, \ k \leq h \} \).
Hence, any normal state \(\omega \) on \(A'' \) that is faithful on \(A \) is also faithful on \(A'' \). This implies, by a theorem of Takesaki [18], that \(A'' \) is generated by its minimal projections and each minimal projection of \(A'' \) is contained in \(A \). Hence, \(A'' \) is a discrete type I von Neumann algebra. Since type I AW\(^*\)-algebras are injective, we conclude that \(A'' = M_{\text{loc}}(A) = I(A) \).
\(\square \)

We shall employ the following notation from [2]. If \(\{ A_\alpha \}_{\alpha \in \Lambda} \) is a family of \(C^* \)-algebras, then

\[
\prod_{\alpha \in \Lambda} A_\alpha = \{ (a_\alpha)_{\alpha} : a_\alpha \in A_\alpha \text{ and } \sup_{\alpha} \| a_\alpha \| < \infty \} ;
\]
\[
\bigoplus_{\alpha \in \Lambda} A_\alpha = \{ (a_\alpha)_{\alpha} : a_\alpha \in A_\alpha \text{ and } \forall \varepsilon > 0 \text{ only finitely many } a_\alpha \text{ satisfy } \| a_\alpha \| > \varepsilon \}.
\]
Note that the direct product \(\prod_{\alpha} A_\alpha \) and the direct sum \(\bigoplus_{\alpha} A_\alpha \) are \(C^* \)-algebras and \(\bigoplus_{\alpha} A_\alpha \) is an ideal of \(\prod_{\alpha} A_\alpha \).

The next theorem is one of the main results of this paper. Recall that an elementary \(C^* \)-algebra is one that is isomorphic to \(K(H) \) for some Hilbert space \(H \).

Theorem 1.2. The following statements are equivalent for a separable \(C^* \)-algebra \(A \).

1. \(I(A) \) is a \(\mathcal{W}^* \)-algebra.
2. \(M_{\text{loc}}(A) \) is a \(\mathcal{W}^* \)-algebra.
3. \(M_{\text{loc}}(A) \) is a discrete type I \(\mathcal{W}^* \)-algebra.
4. \(A \) contains a minimal essential ideal that is isomorphic to a direct sum of elementary \(C^* \)-algebras.

Proof. (1) \(\Rightarrow \) (4). As \(A \) is a \(C^* \)-algebra whose injective envelope \(I(A) \) is a \(\mathcal{W}^* \)-algebra, \(\overline{A} \) is also a \(\mathcal{W}^* \)-algebra (because a monotone closed \(C^* \)-subalgebra of a von Neumann algebra is a von Neumann algebra [13]). Since \(A \) is separable, \(\overline{A} \) has a countable order-dense subset (Wright notes in [21, page 84] that the equivalence of the separability and having a countable order-dense subset follows from Theorem 4.3 of [19]). Hence, by [21, Proposition A], the set of pure states of \(\overline{A} \) (in the weak* topology) is hyperseparable. Since hyperseparability implies separability, another theorem of Wright [20, Corollary 7] shows that \(\overline{A} \) is isomorphic to \(\prod_{n} B(H_n) \) (a countable product), with each \(H_n \) separable. Further, since \(\prod_{n} B(H_n) \) is injective, it follows that \(I(A) = \overline{A} = \prod_{n} B(H_n) \). Finally, Lemma 3.1(iii) of [12] yields that \(\bigoplus_{n} K(H_n) \subseteq A \subseteq \prod_{n} B(H_n) \). The minimality of \(\bigoplus_{n} K(H_n) \) is given by [12, Proposition 3.3].
(4) \(\Rightarrow \) (3). Suppose that \(A \) has a minimal essential ideal \(K \) such that \(K \cong \bigoplus_n K(H_n) \). Therefore, by [2, Lemma 1.2.1],

\[
M(K) = M \left(\bigoplus_n K(H_n) \right) = \prod_n M(K(H_n)) = \prod_n B(H_n),
\]

which shows that \(M(K) \) is a (discrete type I) \(W^* \)-algebra. Furthermore, because \(K \) is a minimal essential ideal of \(A \), \(M(K) = M_{\text{loc}}(A) \) by [2, Remark 2.3.7]. Hence, \(M_{\text{loc}}(A) \) is a discrete type I \(W^* \)-algebra.

The implication (3) \(\Rightarrow \) (2) is trivial, and the implication (2) \(\Rightarrow \) (3) is Lemma 1.1. (3) \(\Rightarrow \) (1). Type I \(AW^* \)-algebras are injective, and so the inclusion \(A \subseteq M_{\text{loc}}(A) \subseteq I(A) \) (with \(M_{\text{loc}}(A) \) injective) implies that \(M_{\text{loc}}(A) = I(A) \), whence \(I(A) \) is a \(W^* \)-algebra.

\[\square \]

Corollary 1.3. If any one of the equivalent conditions in Theorem 1.2 holds for a separable \(C^* \)-algebra \(A \), then

\[
M_{\text{loc}}(A) = M_{\text{loc}}(M_{\text{loc}}(A)) = \overline{A} = I(A).
\]

Proof. Assume that any one of the statements (1)–(4) in Theorem 1.2 holds. Then \(M_{\text{loc}}(A) \) is an injective \(W^* \)-algebra. However, \(A \subseteq M_{\text{loc}}(A) \subseteq I(A) \) as \(C^* \)-subalgebras, and so by definition of the injective envelope, it must be that \(M_{\text{loc}}(A) = I(A) \), which proves that \(M_{\text{loc}}(A) = M_{\text{loc}}(M_{\text{loc}}(A)) = \overline{A} = I(A) \).

\[\square \]

Corollary 1.4. If \(A \) is a separable, prime \(C^* \)-algebra, then exactly one of the following two statements holds:

1. \(I(A) \cong B(H) \), for some separable Hilbert space \(H \);
2. \(I(A) \) is a wild type III \(AW^* \)-factor.

In particular, if \(A \) has no nonzero postliminal ideals, then \(I(A) \) is a wild type III \(AW^* \)-factor.

Proof. Because \(A \) is prime, \(I(A) \) is an \(AW^* \)-factor [11, Theorem 7.1]. This factor cannot be of type II for the following reasons.

If \(I(A) \) is a finite type II \(AW^* \)-factor, then the identity \(1 \in I(A) \) is a finite projection, and so \(1 \) is a finite projection in \(\overline{A} \) as well. Therefore, \(\overline{A} \) is of type I [15, Theorem 2]. But type I algebras are injective; hence \(\overline{A} = I(A) \), contradicting that \(I(A) \) is of type II. Thus, assume that \(I(A) \) is a type \(II_{\infty} \) \(AW^* \)-factor. Since \(I(A) \) admits a faithful state (because \(A \) is separable), \(I(A) \) is a \(W^* \)-algebra by [6]. So Theorem 1.2 implies that \(I(A) \) is of type I, which is a contradiction. Hence, \(I(A) \) is a factor of either type I or type III.

In the case where \(I(A) \) is of type I we have \(I(A) \cong B(H) \) for some Hilbert space \(H \), because all type I \(AW^* \)-factors have this form [14, Theorem 2]. Indeed, in this case, \(\overline{A} = I(A) \cong B(H) \); since \(\overline{A} \) is countably decomposable, \(H \) can be chosen to be separable.

If \(I(A) \) is not of type I, then the type III \(AW^* \)-factor \(I(A) \) cannot be a \(W^* \)-algebra, by Theorem 1.2. Every \(AW^* \)-factor that is not \(W^* \)-algebra is wild [21]; hence, \(I(A) \) is wild.
Finally, if \(A \) is prime and has a nonzero postliminal ideal, then \(I(A) \) is of type I \([12]\). Thus, a prime separable C*-algebra with no nonzero postliminal ideals must have a wild type III injective envelope. \(\Box \)

2. A Version of the Boundary Theorem

If \(E \) is an operator system, then the C*-envelope \([10, 16]\) of \(E \) is the C*-subalgebra \(C^*_\text{env}(E) \) of \(I(E) \) generated by \(E \). The C*-algebra \(C^*_\text{env}(E) \) is independent of the choice embedding of \(E \) into an injective envelope \((I, \kappa)\) of \(E \); thus, the notation \(C^*_\text{env}(E) \) is unambiguous.

The aim of the present section is to prove the following result.

Theorem 2.1. Let \(E \subseteq B(H) \) be an operator system for which the von Neumann algebra \(E'' \) is generated by its minimal projections, each of which is contained in the C*-subalgebra \(C^*(E) \) of \(B(H) \) generated by \(E \). Then \(I(E) \) is a type I W*-algebra and

\[
I(E) \cong E'' \quad \text{and} \quad C^*_\text{env}(E) \cong C^*(E).
\]

Before turning to the proof of Theorem 2.1, recall that the original motivation for the concept of injectivity is Arveson’s Hahn–Banach Extension Theorem \([4]\) for completely positive linear maps, and that the idea of an injective envelope stems from Arveson’s theory of boundary representations \([5]\). In Arveson’s work on boundary representations, the operator systems were often realized as irreducible operator systems in \(B(H) \) and their generated C*-algebras \(C^*(E) \) were sometimes assumed to have nontrivial intersection with—and hence contain—the ideal \(K(H) \) of compact operators. In this spirit, Theorem 2.1 is a generalization of the boundary theorem from \(B(H) \) to discrete type I von Neumann algebras.

Two preliminary results are needed for the proof of Theorem 2.1. The first result is a proposition of Hamana that is a useful criterion for determining when an injective operator system \(I \) containing \(E \) is an injective envelope.

Proposition 2.2. (\([9, \text{Lemma } 3.7]\)) Consider an inclusion \(E \subseteq I \) of operator systems, where \(I \) is injective. Then the following statements are equivalent.

1. \(I \) is an injective envelope of \(E \).
2. The only completely positive linear map \(\omega : I \to I \) for which \(\omega|_E = \text{id}_E \) is the identity map \(\omega = \text{id}_I \).

The second preliminary result is a kind of partial converse to the main result of \([18]\).

Lemma 2.3. Suppose that \(A \) is a C*-subalgebra of a von Neumann algebra \(M \) and that \(M = A'' \). If \(M \) is generated by its minimal projections, each of which is contained in \(A \), then \(A \) is order dense in \(M \).

Proof. Choose a nonzero \(h \in M^+ \) and consider the set

\[
\mathcal{F} = \{ (k_i) \subset A^+ : \sum_{\text{finite}} k_i \leq h \}.
\]
There is a strictly positive \(\lambda \) in the spectrum \(\sigma(h) \) of \(h \). Let \(e \in M \) be the spectral projection \(e = e^h((\lambda, \infty)) \), where \(e^h \) denotes the spectral resolution of \(h \). Thus, \(0 \neq \lambda e \leq he \). Moreover, \(e \) majorizes a minimal projection \(p \) of \(M \); by hypothesis, \(p \in A \). Thus, \(0 \neq \lambda p = e(\lambda p)e \leq e(\lambda)e = \lambda e \leq he \leq h \), and so \(\lambda p \in \mathcal{F} \), which proves that \(\mathcal{F} \neq \emptyset \). It is clear that \(\mathcal{F} \) is inductive under inclusions of those families and so, by Zorn’s Lemma, \(\mathcal{F} \) has a maximal family \(W \). Since every finite sum of this family is less than \(h \),

\[
y = \sup \left\{ \sum_{k \in K} k : K \text{ is finite and } K \subset W \right\} \leq h.
\]

If \(y \neq h \), then \(h - y \in M^+ \), and so by the first paragraph there exists nonzero \(k \in A^+ \) such that \(k \leq h - y \). If it were true that \(k \in W \), then for each net \((h_i) \) of those finite sums of elements in \(W \) such that \(h_i \not\succ y+k \), the net \((h_i+k) \not\succ y+k \), which contradicts the fact that \(y \) is the supremum. Hence, \(k \not\in W \). But if \(k \not\in W \), then the family \(W \) is not maximal, which is again a contradiction. Therefore, it must be that \(y = h \), which proves that \(A \) is order dense in \(M \).

Theorem 2.4. If \(A \subseteq B(H) \) is a C*-algebra and if \(M = A'' \) is generated by its minimal projections, each of which is contained in \(A \), then \(\varphi = \text{id}_M \) for every completely positive linear map \(\varphi : M \to M \) for which \(\varphi|_A = \text{id}_A \).

Proof. Observe that because \(\varphi : M \to M \) is a unital completely positive map that preserves \(A \), \(\varphi \) has the following property:

\[
\varphi(xk) = \varphi(x)k, \text{ for every } k \in A.
\]

This fact follows from the Cauchy-Schwarz inequality and from the fact that \(A \) is in the multiplicative domain of \(\varphi \) [16, Theorem 3.18]. Using this fact we shall deduce below that

\[
(2.1) \quad x \geq 0 \text{ if and only if } \varphi(x) \geq 0.
\]

Indeed, one implication is obvious from the positivity of \(\varphi \). To prove the other implication, assume that \(\varphi(x) \geq 0 \). Thus, \(\text{Im} (\varphi(x)) = \varphi(\text{Im} (x)) = 0 \). Let \(z = \text{Im} (x) \) and write \(z = z^+ - z^- \), where \(z^+, z^- \in M^+ \) are such that \(z^+z^- = z^-z^+ = 0 \).

Our first goal is to prove that \(z^+ = 0 \). Suppose, on the contrary, that \(z^+ \neq 0 \). Thus, there is a strictly positive \(\lambda \) in the spectrum of \(z^+ \); hence, there is a spectral projection \(p \in M \) such that \(0 \neq \lambda p \leq pz^+ = z^+p \). Note that \(z^-p = 0 \), as the projection \(p \) is in the von Neumann algebra generated by \(z^+ \) and \(z^+z^- = z^-z^+ = 0 \). Let \(q \in A \) be an arbitrary minimal projection of \(M \) and consider the projection \(p \wedge q \in M \). Because \(p \wedge q \leq q \) and \(q \) is minimal, either \(p \wedge q = 0 \) or \(p \wedge q = q \). We will show that the latter case cannot occur (under the conventional assumption that minimal projections are defined to be nonzero). Assume that it is true that \(p \wedge q = q \). Then \(0 \neq q = p \wedge q \leq p \). Pre- and post-multiply the inequality \(\lambda q \leq \lambda p \leq z^+p = zp \) by \(q \) to obtain \(\lambda q \leq q(zp)q \leq qzq \). Note that \(\varphi(qzq) = \varphi(zq) = q\varphi(z)q = 0 \) and \(0 \leq \lambda q = \varphi(\lambda q) \leq q\varphi(z)q = 0 \). This implies that \(q = 0 \), which contradicts the
fact that q is minimal and, thus, nonzero. Therefore, it must be that $p \wedge q = 0$, for every minimal projection q of M. Because every nonzero projection in M majorizes a minimal projection, we conclude that $p = 0$, in contradiction to the fact that p is a nonzero spectral projection of z^+. Hence, it must be that $z^+ = 0$.

A similar argument shows that $z^- = 0$. We can find a nonzero $\lambda \in \mathbb{R}^+$ and a minimal projection $q \in A$ such that $qzq \leq -\lambda q$; thus $-\lambda q = \varphi(-\lambda q) \geq \varphi(qzq) = q\varphi(z)q = 0$, and again $q = 0$.

We conclude that $z = 0$, which implies that x is selfadjoint. It remains to show that x is positive. Assume that x is not positive. Thus, there exists a nonzero spectral projection in the negative part of $\sigma(x)$; by taking once again a suitable minimal subprojection q, we can find $\lambda > 0$ such that $qzxq \leq -\lambda q$. But then $\varphi(qzxq) \leq -\lambda q$; and on the other hand, $\varphi(qzxq) = q\varphi(x)q \geq 0$. The contradiction implies that no such q can exist, and so $x \geq 0$.

From (2.1) and the fact the φ preserves A, we have that for $k \in A$, $k \leq x$ if and only if $k \leq \varphi(x)$. Lemma 2.3 asserts that A is order dense in M. Hence, $\varphi(x) = x$ for every $x \in M^+$, which implies that φ is the identity map on M. \hfill \qed

Proof of Theorem 2.1. By hypothesis, $C^*(E)$ contains all the minimal projections that generate E''. Theorem 2.4 together with Proposition 2.2 show that E'' is an injective envelope for E. Further, there is a completely positive projection ϕ on $B(H)$ with range E''. Hence, if $x, y \in E''$, then $x \circ y$—the product of x and y in the C^*-algebra $I(E)$—is given by $x \circ y = \phi(xy) = xy$, since E'' is an algebra. Thus, $E'' = I(E)$ and $C^*(E)$ is precisely $C^*_{env}(E)$. \hfill \qed

Acknowledgements. We wish to thank the referee for a number of useful suggestions. Our original proof that (1) implies (4) in Theorem 1.2 was achieved by different methods than the proof included herein; the proof given here was communicated to us by Professor M. Hamana. This work has been supported in part by the Natural Sciences and Engineering Research Council of Canada.

References

Department of Mathematics and Statistics
University of Regina
Regina, Saskatchewan
Canada S4S 0A2

E-mail address:argerami@math.uregina.ca
E-mail address:farenick@math.uregina.ca