Approximate amenability of Segal algebras

Mahmood Alaghmandan

Saskatchewan Analysis Day
University of Saskatchewan

17 March 2012
Approximate amenability

Ghahramani and Loy [2004]:
A Banach algebra \mathcal{A} is said to be *approximately amenable* if for every \mathcal{A}-bimodule X and every bounded derivation $D : \mathcal{A} \to X$, there exists a net (D_α) of inner derivations such that

$$\lim_{\alpha} D_\alpha(a) = D(a) \quad \text{for all } a \in \mathcal{A}.$$
Abstract Segal algebras

We say \((\mathcal{B}, \| \cdot \|_{\mathcal{B}})\) to be an *abstract Segal algebra* of Banach algebra \((\mathcal{A}, \| \cdot \|_{\mathcal{A}})\) if

1. \(\mathcal{B}\) is a dense left ideal in \(\mathcal{A}\).
2. There exists \(M > 0\) such that \(\|b\|_{\mathcal{A}} \leq M\|b\|_{\mathcal{B}}\) for each \(b \in \mathcal{B}\).
3. There exists \(C > 0\) such that \(\|ab\|_{\mathcal{B}} \leq C\|a\|_{\mathcal{A}}\|b\|_{\mathcal{B}}\) for all \(a \in \mathcal{A}\), \(b \in \mathcal{B}\).

\(\mathcal{B}\) is a proper subalgebra of \(\mathcal{A}\), we call it a *proper* abstract Segal algebra of \(\mathcal{A}\).
Segal algebras on locally compact groups

Let G be a locally compact group. A linear subspace $S^1(G)$ of $L^1(G)$, the group algebra of G, is said to be a Segal algebra on G, if it satisfies the following conditions:

1. $S^1(G)$ is dense in $L^1(G)$.
2. $S^1(G)$ is a Banach space under some norm $\| \cdot \|_{S^1}$ and $\| f \|_{S^1} \geq \| f \|_1$ for all $f \in S^1(G)$.
3. $S^1(G)$ is left translation invariant and the map $x \mapsto L_x f$ of G into $S^1(G)$ is continuous when $L_x f(y) = f(x^{-1}y)$.
4. $\| L_x f \|_{S^1} = \| f \|_{S^1}$ for all $f \in S^1(G)$ and $x \in G$.

Note that every Segal algebra is an abstract Segal algebra of $L^1(G)$ with convolution product.

Similarly, we call a Segal algebra on G to be proper if it is a proper subalgebra of $L^1(G)$.
Segal algebras
on locally compact groups

Let G be a locally compact group. A linear subspace $S^1(G)$ of $L^1(G)$, the group algebra of G, is said to be a Segal algebra on G, if it satisfies the following conditions:

1. $S^1(G)$ is dense in $L^1(G)$.
2. $S^1(G)$ is a Banach space under some norm $\| \cdot \|_{S^1}$ and $\| f \|_{S^1} \geq \| f \|_1$ for all $f \in S^1(G)$.
3. $S^1(G)$ is left translation invariant and the map $x \mapsto L_x f$ of G into $S^1(G)$ is continuous when $L_x f(y) = f(x^{-1}y)$.
4. $\| L_x f \|_{S^1} = \| f \|_{S^1}$ for all $f \in S^1(G)$ and $x \in G$.

Note that every Segal algebra is an abstract Segal algebra of $L^1(G)$ with convolution product.
Similarly, we call a Segal algebra on G to be proper if it is a proper subalgebra of $L^1(G)$.
The history of approximate amenability of Segal algebras

Dales, Loy, and Zhang [2006] and Dales and Loy [2010]:
Certain Segal algebras on \mathbb{T} and \mathbb{R} are not approximately amenable.

Conjectured:
No proper Segal algebra on \mathbb{T} is approximately amenable.

Choi and Ghahramani [2011]:
No proper Segal algebra on \mathbb{T}^d or \mathbb{R}^d is approximately amenable.
The history of approximate amenability of Segal algebras

Dales, Loy, and Zhang [2006] and Dales and Loy [2010]: Certain Segal algebras on \mathbb{T} and \mathbb{R} are not approximately amenable.

Conjectured: No proper Segal algebra on \mathbb{T} is approximately amenable.

Choi and Ghahramani [2011]: No proper Segal algebra on \mathbb{T}^d or \mathbb{R}^d is approximately amenable.
A nice criterion

Choi and Ghahramani [2011]:

The criterion

Let \mathcal{B} be a proper abstract Segal algebra of \mathcal{A}. If there exists a sequence $(u_n)_{n \geq 1} \subseteq \mathcal{B}$ such that:

- $u_n u_{n+1} = u_n = u_{n+1} u_n$.
- $\sup_n \|u_n\|_{\mathcal{A}} < \infty$.
- $\sup_n \|u_n\|_{\mathcal{B}} = \infty$.

Then \mathcal{B} is not approximately amenable.
1. Abelian groups

2. Compact groups
A(G) = \{ f \ast \check{g} : f, g \in L^2(G) \}.

Applying Fourier transform

\[\mathcal{F} : L^1(G) \to A(\hat{G}) \]

we may transform each proper Segal algebra to a proper abstract Segal algebra \(SA(\hat{G}) \) of \(A(\hat{G}) \).

So we study the abstract Segal algebras of Fourier algebra!
Segal algebras of locally compact abelian groups

\[A(G) = \{ f * \hat{g} : f, g \in L^2(G) \}. \]

Applying Fourier transform

\[\mathcal{F} : L^1(G) \rightarrow A(\hat{G}) \]

we may transform each proper Segal algebra to a proper abstract Segal algebra \(SA(\hat{G}) \) of \(A(\hat{G}) \).

So we study the abstract Segal algebras of Fourier algebra!
Theorem

Let G be a locally compact abelian group. Then every proper Segal algebra of G is not approximately amenable.

Proof. Let $S^1(G)$ a proper Segal algebra of G, then

$$SA(\hat{G}) = \mathcal{F}(S^1(G)).$$

We use that criterion to show that $SA(\hat{G})$ is not approximately amenable.
De la vallée poussin kernel

We are looking for \((u_n)_n \subseteq SA(\hat{G})\) such that:

- \(u_n u_{n+1} = u_n = u_{n+1} u_n\).
- \(\sup_n \| u_n \|_{A(\hat{G})} < \infty\).
- \(\sup_n \| u_n \|_{SA(\hat{G})} = \infty\).

Generating \(u_n\)'s by \(A(\hat{G})\) properties.

Trivially \(\implies u_n u_{n+1} = u_n = u_{n+1} u_n\).

Properness \(\implies \sup_n \| u_n \|_{SA(\hat{G})} = \infty\).
We are looking for \((u_n)_n \subseteq SA(\hat{G})\) such that:

- \(u_n u_{n+1} = u_n = u_{n+1} u_n\).
- \(\sup_n \|u_n\|_{A(\hat{G})} < \infty\).
- \(\sup_n \|u_n\|_{SA(\hat{G})} = \infty\).

Generating \(u_n\)'s by \(A(\hat{G})\) properties.

Trivially \(\Rightarrow\) \(u_n u_{n+1} = u_n = u_{n+1} u_n\).

Properness \(\Rightarrow\) \(\sup_n \|u_n\|_{SA(\hat{G})} = \infty\).
De la vallée poussin kernel

We are looking for \((u_n) \subseteq SA(\hat{G})\) such that:

- \(u_n u_{n+1} = u_n = u_{n+1} u_n\).
- \(\sup_n \|u_n\|_{A(\hat{G})} < \infty\).
- \(\sup_n \|u_n\|_{SA(\hat{G})} = \infty\).

Generating \(u_n\)'s by \(A(\hat{G})\) properties.

Trivially \(\implies u_n u_{n+1} = u_n = u_{n+1} u_n\).

Properness \(\implies \sup_n \|u_n\|_{SA(\hat{G})} = \infty\).
Leptin condition

G is amenable if and only if it satisfies \textit{Leptin condition} i.e. for every $\epsilon > 0$ and compact set $K \subseteq G$, there exists a relatively compact neighborhood V of e such that $\lambda(KV)/\lambda(V) < 1 + \epsilon$.

\textbf{Leptin condition on abelian group} $\hat{G} \iff \sup_n \|u_n\|_{A(\hat{G})} < \infty$.

\textbf{Theorem}

Let G be a locally compact abelian group. Then every proper Segal algebra of G is not approximately amenable.
Leptin condition

G is amenable if and only if it satisfies \textit{Leptin condition} i.e. for every \(\epsilon > 0 \) and compact set \(K \subseteq G \), there exists a relatively compact neighborhood \(V \) of \(e \) such that \(\frac{\lambda(KV)}{\lambda(V)} < 1 + \epsilon \).

\textbf{Leptin condition on abelian group} \(\hat{G} \iff \sup_n \| u_n \|_{A(\hat{G})} < \infty \).

\textbf{Theorem}

Let \(G \) be a locally compact abelian group. Then every proper Segal algebra of \(G \) is not approximately amenable.
1 Abelian groups

2 Compact groups
Compact groups

Let G be a compact group, $\hat{G} = \{\pi\}$ the set of all irreducible unitary representations of G. $\pi : G \to B(\mathcal{H}_\pi)$ $(\mathcal{H}_\pi = \mathbb{C}^{d_\pi})$. There is indeed kind of convolution on \hat{G} makes it a hypergroup.

Define measure h on discrete set \hat{G}, where $h(\pi) = d_\pi$. Indeed $L^1(\hat{G}, h)$ forms a Banach algebra with that convolution.

For each $\pi \in \hat{G}$, we integrate $\pi : L^1(G) \to B(\mathcal{H}_\pi)$, where $f \mapsto \hat{f}(\pi)$.

$$\mathcal{F} : f \in L^1(G) \mapsto \begin{bmatrix} \hat{f}(\pi_1) & 0 & \cdots & 0 & \cdots \\ 0 & \hat{f}(\pi_2) & \cdots & 0 & \cdots \\ \vdots & \vdots & \ddots & 0 & \cdots \\ 0 & 0 & \cdots & \hat{f}(\pi_n) & \cdots \\ \vdots & \vdots & \cdots & \vdots & \ddots \end{bmatrix}$$
Compact groups

Let G be a compact group, $\hat{G} = \{\pi\}$ the set of all irreducible unitary representations of G. $\pi : G \to B(\mathcal{H}_\pi)$ ($\mathcal{H}_\pi = \mathbb{C}^{d_\pi}$). There is indeed kind of convolution on \hat{G} makes it a hypergroup.

Define measure h on discrete set \hat{G}, where $h(\pi) = d_\pi$. Indeed $L^1(\hat{G}, h)$ forms a Banach algebra with that convolution.

For each $\pi \in \hat{G}$, we integrate $\pi : L^1(G) \to B(\mathcal{H}_\pi)$, where $f \mapsto \hat{f}(\pi)$.

\[\mathcal{F} : f \in L^1(G) \mapsto \begin{bmatrix}
\hat{f}(\pi_1) & 0 & \cdots & 0 & \cdots \\
0 & \hat{f}(\pi_2) & \cdots & 0 & \cdots \\
\vdots & \vdots & \ddots & 0 & \cdots \\
0 & 0 & \cdots & \hat{f}(\pi_n) & \cdots \\
\vdots & \vdots & \cdots & \vdots & \ddots
\end{bmatrix}\]
Center of the group algebra

\[ZL^1(G) := \{ f \in L^1(G) : f(yxy^{-1}) = f(x) \text{ for all } x \in G \}. \]

\[\mathcal{F} : f \in ZL^2(G) \subseteq ZL^1(G) \mapsto \begin{bmatrix} \alpha_{\pi_1} l_{\pi_1} & 0 & \cdots & 0 & \cdots \\ 0 & \alpha_{\pi_2} l_{\pi_2} & \cdots & 0 & \cdots \\ \vdots & \vdots & \ddots & 0 & \cdots \\ 0 & 0 & \cdots & \alpha_{\pi_n} l_{\pi_n} & \cdots \\ \vdots & \vdots & \cdots & \vdots & \ddots \end{bmatrix} \]

Note:

\[\sum_{\pi \in \hat{G}} \alpha_{\pi}^2 d_{\pi} < \infty \implies (\alpha_{\pi})_{\pi \in \hat{G}} \in L^2(\hat{G}, h). \]
Center of the group algebra

\[ZL^1(G) := \{ f \in L^1(G) : f(yxy^{-1}) = f(x) \text{ for all } x \in G \}. \]

\[\mathcal{F} : f \in ZL^2(G) \subseteq ZL^1(G) \mapsto \begin{bmatrix} \alpha_{\pi_1} I_{\pi_1} & 0 & \cdots & 0 & \cdots & 0 \\ 0 & \alpha_{\pi_2} I_{\pi_2} & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 & \cdots & 0 \\ 0 & 0 & \cdots & \alpha_{\pi_n} I_{\pi_n} & \cdots \\ \vdots & \vdots & \cdots & \ddots & \vdots & \vdots \end{bmatrix} \]

Note:

\[\sum_{\pi \in \hat{G}} \alpha^2 \pi d_\pi < \infty \implies (\alpha_\pi)_{\pi \in \hat{G}} \in L^2(\hat{G}, h). \]
Fourier algebra on \hat{G}

Using \mathcal{F}, we define $T : ZL^2(G) \to L^2(\hat{G}, h)$, where $T(f) = (\alpha_\pi)_\pi (h(\pi) = d_\pi)$.

So we can extend this map from $ZL^1(G)$ onto $L^2(\hat{G}, h) \ast L^2(\hat{G}, h)$. We see that

$$A(\hat{G}) := \{ f \ast \check{g} : f, g \in L^2(\hat{G}, h) \}$$

is a Banach algebra with pointwise product on \hat{G}.

Fourier space on hypergroups defined by Muruganandam [2007].

Good Things!

$T(ZL^1(G)) = A(\hat{G})$ as Banach algebras.
Fourier algebra on \hat{G}

Using \mathcal{F}, we define $\mathcal{T} : ZL^2(G) \to L^2(\hat{G}, h)$, where $\mathcal{T}(f) = (\alpha_\pi)_\pi$ ($h(\pi) = d_\pi$).

So we can extend this map from $ZL^1(G)$ onto $L^2(\hat{G}, h) \ast L^2(\hat{G}, h)$. We see that

$$A(\hat{G}) := \{ f \ast \check{g} : f, g \in L^2(\hat{G}, h) \}$$

is a Banach algebra with pointwise product on \hat{G}.

Fourier space on hypergroups defined by Muruganandam [2007].

Good Things!

$\mathcal{T}(ZL^1(G)) = A(\hat{G})$ as Banach algebras.
Fourier algebra on \hat{G}

Using \mathcal{F}, we define $\mathcal{T} : ZL^2(G) \rightarrow L^2(\hat{G}, h)$, where $\mathcal{T}(f) = (\alpha_\pi)_\pi$ ($h(\pi) = d_\pi$).
So we can extend this map from $ZL^1(G)$ onto $L^2(\hat{G}, h) \ast L^2(\hat{G}, h)$. We see that
\begin{equation*}
A(\hat{G}) := \{ f \ast \check{g} : f, g \in L^2(\hat{G}, h) \}
\end{equation*}
is a Banach algebra with pointwise product on \hat{G}.

Fourier space on hypergroups defined by Muruganandam [2007].

Good Things!

$\mathcal{T}(ZL^1(G)) = A(\hat{G})$ as Banach algebras.
Let G be a compact group. Let $S^1(G)$ a proper Segal algebra of G, then

$$\mathcal{T}(ZS^1(G)) \subseteq A(\hat{G}).$$

Let us apply the earlier criterion on $\mathcal{T}(ZS^1(G))$.
We can generate a sequence \((u_n) \subseteq \mathcal{T}(ZS^1(G))\) such that

1. \(u_n u_{n+1} = u_n\).
2. \(\sup_n \|\mathcal{T}^{-1}(u_n)\|_{S^1(G)} = \infty\).

To satisfy the last condition, we need Leptin condition for hyper group \(\hat{G}\). We define *Leptin condition* for hypergroups and study that for some special hyper groups:

Leptin condition for hypergroups

We say that \(H\) satisfies *Leptin condition* if for every compact subset \(K\) of \(H\) and \(\epsilon > 0\), there exists a measurable set \(V\) in \(H\) such that

\[
0 < h(V) < \infty \text{ and } h(K \ast V)/h(V) < 1 + \epsilon.
\]

If \(\hat{G}\) satisfies Leptin condition \(\implies\)

\[
\sup_n \|\mathcal{T}^{-1}u_n\|_{L^1(G)} < \infty.
\]
We can generate a sequence \((u_n)_n \subseteq T(ZS^1(G))\) such that

- \(u_n u_{n+1} = u_n\).
- \(\sup_n \|T^{-1}(u_n)\|_{S^1(G)} = \infty\).

To satisfy the last condition, we need Leptin condition for hyper group \(\hat{G}\). We define \textit{Leptin condition} for hypergroups and study that for some special hyper groups:

Leptin condition for hypergroups

We say that \(H\) satisfies \textit{Leptin condition} if for every compact subset \(K\) of \(H\) and \(\epsilon > 0\), there exists a measurable set \(V\) in \(H\) such that

\[
0 < h(V) < \infty \quad \text{and} \quad h(K \ast V)/h(V) < 1 + \epsilon.
\]

If \(\hat{G}\) satisfies Leptin condition \(\implies\)

\(\sup_n \|T^{-1}u_n\|_{L^1(G)} < \infty\).
We can generate a sequence \((u_n)_n \subseteq \mathcal{T}(ZS^1(G))\) such that
- \(u_n u_{n+1} = u_n\).
- \(\sup_n \|\mathcal{T}^{-1}(u_n)\|_{S^1(G)} = \infty\).

To satisfy the last condition, we need Leptin condition for hyper group \(\hat{G}\). We define \textit{Leptin condition} for hypergroups and study that for some special hyper groups:

Leptin condition for hypergroups

We say that \(H\) satisfies \textit{Leptin condition} if for every compact subset \(K\) of \(H\) and \(\epsilon > 0\), there exists a measurable set \(V\) in \(H\) such that
\[
0 < h(V) < \infty \quad \text{and} \quad h(K \ast V)/h(V) < 1 + \epsilon.
\]

If \(\hat{G}\) satisfies Leptin condition \(\implies\)
- \(\sup_n \|\mathcal{T}^{-1}u_n\|_{L^1(G)} < \infty\).
Theorem

Let G be a compact group such that \hat{G} satisfies Leptin condition. Then every proper Segal algebra on G is not approximately amenable.
For which compact groups G, \hat{G} satisfies Leptin condition?

$SU(2)$

Leptin condition is held for $SU(2)$.

Product of compact groups

Let $\{G_i\}_{i \in I}$ be a family of compact groups whose duals have Leptin condition and $G = \prod_{i \in I} G_i$ is their product equipped with product topology. Then \hat{G} satisfies Leptin condition.

Example. If G is the product of a family of finite groups, \hat{G} satisfies Leptin condition.

Thank You!